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1 Compositionality in cognition

Compositionality refers to our ability to construct mental representations,
hierarchically, in terms of parts and their relations. The “rules” of com-
position are such that (i) we have at our disposal an infinite repertoire
of hierarchically constructed entities built from relatively small numbers of
lower-level constituents—a phenomenon sometimes referred to as (infinite)
productivity—and (ii) allowable constructions nevertheless respect specific
constraints, whereby overwhelmingly most combinations are made meaning-

less.

Example 1. In language, no more than twenty-six characters and a half-
dozen additional symbols—alternatively no more than a few dozen phonemes—
are required to compose a story on any subject one can possibly imagine.
Moreover, the collection of all texts that have ever been spoken or written in
the English language is an infinitesimal fraction of what can possibly be com-
posed. At the same time, most arrangements of symbols that are possible a
priori from a mere combinatorial point of view are illegitimate as linguistic
constructions. The number of character strings of length 1,000 that make up
a proper English text is vanishingly small when compared to the number of
all possible strings of such length. Thus, while infinitely productive, language
is at the same time severely constrained.

When observed from the “surface,” the composition mechanism in lan-
guage appears simple. Individual characters are assembled into syllables,

which are themselves assembled into words, further composed into phrases,



sentences, etc. One text differs from another text in the same language only
by the relative positioning (relations) among the constituents (symbols), and
not for instance by the frequencies of occurrence of each symbol; these fre-
quencies are about the same for any sufficiently long text. Yet, encoded
within this apparently simple surface structure is a considerable amount of
highly complex organization: syntax, semantics, pragmatics, etc. Linguistic
constraints are partly arbitrary and conventional (a fact sometimes viewed
as a violation to the principle of compositionality), and partly obey some
language-specific regularities. Chomsky (e.g. 1986) further makes the contro-
versial statement that some “universal,” language-independent, regularities,
may result from specific properties of our brains that are largely genetically

determined.

Example 2. In the perception and production of wvisual imagery, primi-
tive elements, that serve analogously to letters or phonemes, are combined
in a highly specific relational manner to form composite entities suitable
themselves for relational bindings into even more specific “high-level” struc-
tures. Edge elements combine, with “rules” about gradient magnitudes and
directions, to form curve elements, which in turn can combine, end-to-end, to
build the cartoon-like boundary description of a scene. Surface elements piece
smoothly together, in a manner consistent with boundary-determined discon-
tinuities, to form three-dimensional shapes, which are themselves combined
into the objects of everyday imagery. There is, furthermore, an infinite, but
nevertheless topologically and logically restricted, repertoire of object place-

ments to produce a meaningful scene. Grenander (1993) has built a mathe-



matical theory of the composition of patterns, characterized by these basic
principles of productivity and restrictedness; Biederman (1987) has exploited
a compositional description of objects using a small repertoire of volumetric

shapes called “geons,” in his psychological theory of object recognition.

Example 3. Procedures can be systematically decomposed from broadly-
defined goals, to be achieved over minutes or hours, recursively into simple
motor actions with durations of fractions of a second. These basic units,
analogous to phonemes or simple shapes, can be effectively combined to

generate an infinite variety of goal-achieving activities.

Organization by composition is in fact so ubiquitous as to suggest that it is
fundamental to cognition. This being the case, there are several implications

worth highlighting:

Disambiguation. The problems of interpreting an image or understanding
spoken language are sometimes said to be ill-posed. Yet they really are
very well-posed, as attested to by the spectacular recognition performances
achieved by humans under ordinary circumstances. It is true however that
auditory and visual data are often ambiguous at all but the most global
levels of interpretation. Isolated phonemes or even words and phrases spliced
from a continuous speech signal can be impossible to interpret. In fact, the
mere segmentation of a speech signal into phonemes or words is difficult, if
not impossible, in the absence of a simultaneous global interpretation. This
apparent ambiguity persists at any given level, or at several levels at once

(acoustic, phonetic, lexical, syntactic). Analogous considerations apply to
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scene analysis.

Evidently, despite the richness of possible scenes or utterances, there are
severe constraints restricting plausible interpretations. Recalling that com-
positional constructs are themselves highly restricted, we may interpret our
remarkable auditory and visual perceptual skills as exploiting, in a funda-

mental way, the restrictedness of compositionality.

Invariance. Relational descriptions are invariant. In computer vision, this
is the basis for many object recognition algorithms (cf. Dickinson et al.,
1992): define the objects of interest relationally, and often hierarchically,
in terms of the relative positionings of identifiable subparts. Identification
becomes, essentially, a matter of relational graph matching, and is, a fortiori,
invariant. One may, for example, identify a chair as a planar rectangular
surface with four attached more-or-less-identical cylindrical parts, situated
near corners and roughly perpendicular to the plane, and a further plane,
attached perpendicular to the first plane, on the side opposite the cylinders.
The parts, furthermore, may themselves be defined as relational compositions
of still more primitive elements.

Analogous, in language, is the invariance of meaning over a multitude of
almost equivalent expressions: many different word strings can adequately
evoke the mental objects and the (partly metaphorical) relations between
them that constitute a given intended message. Speech demonstrates other
invariances as well: the simple linear relation of constituents confers an in-
variance with respect to the rate of articulation as well as other phonetic

parameters, which can be altered in many ways without affecting meaning.



By and large, it is the order (in English and most other natural languages)
and not the duration of constituents that is the primary vehicle of meaning.

In general then, to the extent that cognitive entities are relationally or-
ganized, they can be identified and/or described in multiple equivalent ways.
Invariance is thereby related to the relational and productive properties of

compositionality.

Computation. Artificial interpretation of speech and image data are daunt-
ing engineering tasks; difficulties generally manifest themselves as overwhelm-
ing computational requirements. A few successes however have been reached—
mostly in speech recognition—and these rely on “divide-and-conquer” strate-
gies, exploiting the hierarchical organization of data. Compositional mod-
els may be based upon primitive grammars that restrict word sequences,
phonetic models for allowable word pronunciations, and acoustic models
for the articulation of the phonetic units. This hierarchy is the basis for
computationally-feasible algorithms that infer a word sequence from a raw
acoustic signal (e.g. Rabiner, 1989).

Such successes, although sparse, strongly suggest that our brains too
avoid explosive combinatorial search by exploiting in a recursive manner the

compositional organization of mental representations.

2 Compositionality in neural systems

Since compositionality is so central to cognition, it appears reasonable to

construe it as an observable manifestation of a property of compositionality



in neural activity. Drawing from §1, we can identify several features that

neural mechanisms for compositionality would likely possess:

Compositional representation through dynamical binding. The neural
representation of a composite entity should include the suitably defined com-
position of those patterns of neural activity that make up the representations
of the constituents of this composite entity. A popular simple example is the
problem of representing a scene containing a red triangle and a blue square.
The mere coactivation of four cells (or groups of cells) representing the four

W«

elementary features “red,” “blue,” “triangle,” “square” would lead to a “su-
perposition catastrophe” (von der Malsburg, 1987), that is, in this case, the
inability to distinguish a scene containing a red triangle and a blue square
from a scene containing a red square and a blue triangle. Composition is thus
more than coactivation: a binding mechanism is required, to attach with each
other the neural representations of the entities “red” and “ triangle.” Binding

needs to be dynamical, i.e., reversible, to allow the representation of other

constructs at different times.

Relational binding. Binding further needs to be relational, that is, quali-
fied in terms of a collection of domain-specific relations among constituents.
For example, to account for our linguistic ability to assemble six lexical items
such as “feed, carve, Elsa, Sophie, pumpkin, cat” into a string such as “So-
phie feeds the cat and Elsa carves the pumpkin,” a compositional model
should use bonds that are qualified in terms of predicate roles. Thus, it will

be specified that the bond between the neural representation of the item



“Sophie” and the neural representation of the item “feed” is of the subject
type, i.e., that it is Sophie who does the feeding. Only then will the represen-
tation of one particular string be distinguishable from the representation of
alternative strings, constructed from the same constituents. Note that these
alternative constructs can be: (i) syntactically and semantically legitimate,
such as “Elsa feeds the cat and Sophie carves the pumpkin”; (i) syntac-
tically correct but semantically/contextually unacceptable, such as “Sophie
carves the cat and Elsa feeds the pumpkin”; (74) syntactically wrong, such

as “Feeds Elsa Sophie carves and the cat pumpkin.”

Hierarchical computation. A basic tenet of compositionality is that cog-
nitive representations are hierarchically organized. Likewise, it is natural to
expect that the computational mechanisms that elicit the sequence of neural
events corresponding to a perceptual or motor act—e.g. in visual pattern
recognition or in the interpretation or production of spoken language—are

hierarchically organized.

It is hardly disputable that, in the sense of the features just outlined, no
satisfactory encompassing treatment of neural compositionality is available
to date. In particular, models of the cell-assembly type, inasmuch as they
address the issue of compositionality, represent each new composite entity
by allocating for it separate neural machinery rather than by composing the
representations of its constituents. This has led some authors (e.g. Fodor
and Pylyshyn, 1988) to the strong, and highly controversial, conclusion that

modern “connectionism” is wholly inadequate to model cognition at the rep-



resentational level—the level discussed here.

Nevertheless, models do exist that provide some elements of a theory
of neural compositionality (e.g. von der Malsburg, 1981, 1987; Shastri and
Ajjanagadde, 1993; Smolensky, 1990; Gindi et al., 1991; Hummel and Bie-
derman, 1992). An important common feature of most of these models is the
use of mechanisms through which a number of neural activity patterns are
combined into a composite pattern that preserves, as subpatterns, the orig-
inal constituent activities. Binding is dynamical: the constituent patterns
can either appear by themselves, representing isolated entities, or they can
be explicitly bound to represent a composite entity.

Thus, a compositional model will in general not allocate a specific cell—
or group of cells—for a composite entity such as “red triangle,” as a typical
feedforward-net model would. Rather, it will employ the already-available
machinery, that is, the elementary-feature cells or cell groups, and posit the
existence of an additional degree of freedom in neural activity. This new de-
gree of freedom will be used to dynamically express the bond between “red”
and “triangle,” thereby avoiding the superposition catastrophe. Similarly, in
the above linguistic example, the primary activity patterns associated with
the six lexical items will be preserved, and an additional degree of freedom
will be used to express syntactical dynamical bonds. In short, composite pat-
terns will be constructed by suitably arranging constituent activities, thereby
providing an explicit representation of parts and their relations. Productiv-
ity will then arise, fundamentally, from combinatorics in a space of neural
activity patterns; see Damasio (1989) for a similar picture based on neu-

roanatomical data and lesion studies.



Most compositional models to date follow a suggestion of von der Mals-
burg (1981, 1987), and use fine temporal structure of neural activity as the
medium for expressing dynamical binding. One currently popular implemen-
tation of this idea—mnot a part of von der Malsburg’s original theory—posits
that the neurons whose activities are to be bound fire, for some time, peri-
odically or nearly periodically. Each neuron is then viewed as carrying two
independent variables, a level of firing and a phase. The latter is the addi-
tional degree of freedom used to express dynamical binding. At this point,
there exists no conclusive neurophysiological evidence for this mechanism.
Some support however comes from recent findings in visual cortex, which
suggest that synchronized oscillatory activity may be used to dynamically
link local features such as line segments, thereby expressing the fact that
they are—or should be—perceived as belonging to a single object (Gray et
al., 1989; Eckhorn et al., 1988).

Shastri and Ajjanagadde (1993) propose a linguistic model along these
lines, in which the representation of a predicate such as “carve” would include
the oscillatory activity of two distinct neurons (or neuronal populations) for
the two roles: subject (“person carving”) and object (“thing carved”). When
representing “Elsa carves the pumpkin,” the person-carving neuron is phase-
locked with the oscillating neuron whose activity represents Elsa. The other
entity occurring in the representation—mnamely, the instantiation of “thing
carved” as “pumpkin”’—uses a different phase. Bindings are propagated
between predicates along hard-wired phase-preserving lines, which embody
long-term rules. For instance, the rule “a person (or animal) being fed eats”

uses a phase-preserving line from the object neuron of predicate “feed” to
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the subject neuron of predicate “eat”; it allows the system to infer, from the
short-term fact that Sophie feeds the cat, another short-term fact, namely
that the cat eats. Long-term facts may also be encoded in the system, e.g.
“Sophie loves animals,” or “children carve pumpkins for Halloween.”

Shastri and Ajjanagadde show that such a system can perform simple,
“reflexive,” reasoning. Albeit limited in several ways, this reasoning may
access a virtually unlimited store of long-term rules and facts. In effect,
Shastri and Ajjanagadde argue that the time taken by the system to make
an inference is proportional to the length of the chain of inference and is
independent of the number of rules and facts encoded. Simple considerations
about firing frequencies, propagation delays, etc. show that the number
of distinct entities that can participate in simultaneous bindings, i.e., the
number of usefully discriminable phases, is roughly 7, the “magic number”
of short-term memory.

In the same spirit of locking the phases of oscillators to express binding,
though with the additional assumption that specialized fast links are used
for signal synchronization, Hummel and Biederman (1992) propose a model
of object recognition from line drawings based upon the compositional ap-
proach to object representation of Biederman (1987) mentioned in §1. Recog-
nition begins with an array of basic constituents such as straight and curved
edge segments and segment terminations. The corresponding activities are
reversibly bound together, via synchronization, into distinct composite pat-
terns which belong to identifiable and distinct “geons.” Simple geometric
relations among geons are explicitly coded too, again via a reversible bind-

ing mechanism based upon activity synchronization. The resulting invariant
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representation elicits the correct labeling of the object in the drawing.

Although these attempts exhibit most of the features outlined in the be-
ginning of the section, they do not add up to a fully coherent theory of neural
compositionality. Most notably, they use rigid architectures—sometimes hi-
erarchically structured as in Hummel and Biederman (1992). They suggest
no convincing hypothesis for the mechanisms underlying the extreme versa-
tility manifested by our brains in linguistic behavior, e.g. in the handling
of recursive constructions, or of metaphors, or, more generally, of analogical
discourse or reasoning. Furthermore, they fail to address the important issue
of how compositional representations are learned and modified, e.g. during
language acquisition. This stands in sharp contrast with the wealth of ideas
about learning advanced for feedforward connectionist networks.

Some efforts have been made to tackle these issues as well. In particular,
von der Malsburg (1981, 1987) suggests adopting a developmental /epigenetic
approach, stressing the role of processes of self-organization and natural se-
lection in neural compositionality. In this approach, one investigates possible
mechanisms of brain development that could result in the formation of spe-
cific spatio-temporal activity patterns that would provide a suitable medium
for highly versatile compositional operations. Bienenstock (1991) has pro-
posed that “synfire chains” (Abeles, 1991 and references therein) may be
relevant here, perhaps more so than oscillating circuits. Synfire chains are,
roughly, large networks that are wired in such a fashion as to support wave-
like patterns of activity specified with a millisecond accuracy. Electrophys-
iological data collected in frontal cortical areas of behaving monkeys are

suggestive of the existence of (reverberating) synfire chains (Abeles et al.,
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1993).

The hypothesis is that these structures could be dynamically bound via
weak synaptic couplings; the wave-like activities of two synfire chains could be
synchronized in much the same way as coupled oscillators lock their phases.
More complex spatio-temporal patterns could arise from reverberation of ac-
tivity, a form of “folding” of the chains upon themselves. Such complex
patterns could exhibit highly specific binding properties (think of the highly
specific interactions between folded proteins), providing a suitable medium
for both productive and restricted composition. Recursiveness of composi-
tionality could, in principle, arise from the further binding of these composite
structures. Here again, however, we are a long way from a completely coher-
ent, much less a comprehensive, theory.

In sum, neural compositionality remains among the most challenging is-
sues in brain theory. Particularly vexing are the computational aspects,
related for instance to the problem of graph matching, e.g. for object recog-
nition, in compositional neural models. Although one may expect significant
progress in theoretical investigations, such progress is bound to remain largely
speculative, until it becomes possible to map cortical activity with high spa-
tial and temporal resolution, and to process in a useful way the overwhelming

amounts of data that will result.
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